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Abstract

Causal Emotion Entailment (CEE) aims to
discover the potential causes behind an emo-
tion in a conversational utterance. Previous
works formalize CEE as independent utter-
ance pair classification problems, with emo-
tion and speaker information neglected. From
a new perspective, this paper considers CEE
in a joint framework. We classify multiple
utterances synchronously to capture the cor-
relations between utterances in a global view
and propose a Two-Stream Attention Model
(TSAM) to effectively model the speaker’s
emotional influences in the conversational his-
tory. Specifically, the TSAM comprises three
modules: Emotion Attention Network (EAN),
Speaker Attention Network (SAN), and inter-
action module. The EAN and SAN incor-
porate emotion and speaker information in
parallel, and the subsequent interaction mod-
ule effectively interchanges relevant informa-
tion between the EAN and SAN via a mu-
tual BiAffine transformation. Experimental
results on a benchmark dataset demonstrate
that our model achieves new State-Of-The-Art
(SOTA) performance and outperforms base-
lines remarkably.1

1 Introduction

With the recent proliferation of open conversational
data on social media platforms, such as Twitter
and Facebook, Emotion Analysis in Conversations
(EAC) has become a popular research topic in the
field of Natural Language Processing (NLP). Most
of the existing works on EAC mainly focus on Emo-
tion Recognition in Conversations (ERC), i.e., rec-
ognizing emotion labels of utterances (e.g., happy,
sad, etc.) (Poria et al., 2017, 2019b; Wang et al.,
2020; Zhang et al., 2020). However, Poria et al.

∗This work was done when Duzhen Zhang was interning
at Pattern Recognition Center, WeChat AI, Tencent Inc, China.

1The code is publicly available at: https://github.
com/BladeDancer957/TSAM.

1, SA

2, SB

You know I am getting married!

Wow! That’s great news. 
Who is the lucky person?

excited

happy

1, SA

2, SB

I  like winter.

Me too.

happy

neutral

3, SA
It’s snowing heavily. What about taking a 
 walk? happy

4, SB That’s a good idea. Let’s go! happy

5, SA

happy
What a heavy snow! Look! The water is  
frozen.

a)

b)

Figure 1: Example conversations sampled from the
benchmark dataset (Poria et al., 2021)

(2021) point out that these studies lack further rea-
soning about emotions, such as understanding the
stimuli and the cause of the emotion. Since Rec-
ognizing Emotion Cause in Conversations (REC-
CON) holds the potential to improve the inter-
pretability and performance of affect-based models,
Poria et al. (2021) put forward a new promising
task, named RECCON, which includes two differ-
ent sub-tasks: Causal Span Extraction (CSE) at
word/phrase level and Causal Emotion Entailment
(CEE) at utterance level. Due to the simplicity and
sufficiency describing emotion causes at the utter-
ance level, we focus on the CEE task in this paper,
whose goal is to predict which particular utterances
in the conversational history contain the cause of
non-neutral emotion in the target utterance.

Compared to the Emotion Cause Extraction
(ECE) in news articles (Gui et al., 2016a; Xia and
Ding, 2019), CEE is particularly challenging due to
the informal expression style and the intermingling
dynamic among interlocutors. Poria et al. (2021)
consider CEE as a set of independent utterance pair
classification problems and neglect the emotion and
speaker information in the conversational history.
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Thus, they can neither capture the correlations be-
tween contextual utterances in a global view nor
model the speaker’s emotional influences, namely
the intra-speaker and inter-speaker emotional influ-
ences.2 Intra-speaker emotional influences mean
that the cause of the emotion is primarily due to
the speaker’s stable mood induced from previous
dialogue turns. As shown in Figure 1 (a), utterance
1 establishes the concept that Speaker A (SA) likes
winter, which triggers a happy mood for future
utterances 3 and 5. Inter-speaker emotional influ-
ences mean that the emotion of the target speaker
is induced from an event mentioned or emotion
revealed by other speakers. As Figure 1 (b) shows,
SB’s happy emotion may be triggered by the event
“getting married” mentioned by SA, or by the fact
that SA is excited about getting married.

To remedy this defect, we tackle CEE in a joint
framework. We classify multiple utterances syn-
chronously to capture the correlations between con-
textual utterances and propose a TSAM to effec-
tively model the speaker’s emotional influences in
the conversational history. Specifically, the TSAM
contains three modules: EAN, SAN, and inter-
action module. The EAN provides utterance-to-
emotion interactions to incorporate emotion infor-
mation by performing attention over emotion em-
beddings. The SAN represents different speaker
relations between utterances in a graph, which pro-
vides utterance-to-utterance interactions to incor-
porate speaker information by performing attention
over the speaker relation graph. These two modules
incorporate emotion and speaker information in par-
allel. Moreover, inspired by (Li et al., 2021a; Tang
et al., 2020), the interaction module interchanges
relevant information between the EAN and SAN
through a mutual BiAffine transformation. Finally,
the entire TSAM can be stacked in multiple layers
to refine iteratively and interchange emotion and
speaker information.

• For the first time, we tackle CEE in a joint
framework to capture the correlations between
contextual utterances in a global view.

• We propose a TSAM to model the speaker’s
emotional influences in the conversational his-
tory, which contains EAN, SAN, and interac-
tion module to incorporate and interchange
emotion and speaker information.

2The speaker’s emotional influences are predominant types
of emotion causes in the dataset as shown in Table 1.

• Experimental results on the benchmark
dataset (Poria et al., 2021) demonstrate the
effectiveness of our proposed model, surpass-
ing the SOTA model significantly.

2 Task Definition

We first define the task of CEE formally. For a
target utterance ut, i.e., the tth utterance in the
conversation, the goal of CEE is to predict which
particular utterances in the conversational history
L(ut) = (u1, u2, ..., ut) are responsible for the
non-neutral emotion in the target utterance. ui is
set as a positive example if it contains the cause
of non-neutral emotion in the target utterance and
a negative example otherwise, where i = 1, ..., t.
The independent utterance pair classification frame-
work (Poria et al., 2021) performs t independent
classifications, each of which takes (ut, ui) as in-
put. Therefore, it fails to capture the correlations
between contextual utterances in a global view. On
the contrary, the proposed joint classification frame-
work only performs one joint classification with
L(ut) as input, which makes it possible to capture
the correlations between contextual utterances.

3 Method

The proposed model consists of three main compo-
nents: the contextual utterance representation mod-
ule, the TSAM, and the cause prediction module.
The whole architecture of our model is illustrated
as Figure 2.

3.1 Contextual Utterance Representation

The pre-trained RoBERTa is utilized as the utter-
ance encoder, and we extract the contextual utter-
ance representations by feeding the whole of the
conversational history L(ut) into the RoBERTa
(Liu et al., 2019). Specifically, each utterance in
L(ut) is expanded to start with the token “[CLS]”
and end with the token “[SEP]”. The input represen-
tation for each token is the sum of its corresponding
token and position embeddings. The contextual rep-
resentation hu

i ∈ Rdh for utterance ui is the output
of the corresponding “[CLS]” token, where dh de-
notes the dimension of the utterance representation.
The contextual representation for all utterances is
denoted as Hu ∈ Rt×dh . The RoBERTa we uti-
lized is fine-tuned with the training process.
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[SEP]
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[SEP]
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Figure 2: The top is the proposed model’s entire architecture, and the bottom is the detailed architecture of model
components: (a) EAN, (b) SAN. First, we obtain the contextual representation for each utterance with RoBERTa.
Then, the TSAM is utilized to model the speaker’s emotional influences in the conversational history. Finally, the
cause prediction module is used to output the predictions.

3.2 TSAM
The TSAM models the speaker’s emotional influ-
ences with three modules: EAN, SAN, and Inter-
action. We first illustrate the calculation process of
each module in one-layer TSAM and then general-
ize it to multiple successive layers.

3.2.1 EAN
The EAN provides utterance-to-emotion interac-
tions to explicitly incorporate emotion information
by performing attention over emotion embeddings.

Emotion Representation Given the set of candi-
date emotion labels E = {e1, ..., e|E|}, each emo-
tion label ek is represented using an embedding
vector (Cui and Zhang, 2019):

xe
k = Embed(ek) ∈ Rdh (1)

where k = 1, ..., |E|, dh denotes the dimension
of the emotion embedding. Embed represents an
emotion embedding lookup table, which is initial-
ized by contextual embeddings from RoBERTa and
tuned during model training. The embedding for
the set of the whole emotion labels is denoted as
Xe ∈ R|E|×dh .

EAN Inference With the emotion labels repre-
sented as embeddings, we extract the emotion in-
formationHe ∈ Rt×dh by performing dot-product
attention over contextual utterance representations
and emotion embeddings, which is calculated as:

He = attention(Q,K,V ) = αV (2)

α = softmax(
QKT

√
dh

) (3)

where Q = Hu,K = V = Xe, α ∈ Rt×|E|

is an attention matrix consisting of potential emo-
tion distributions for all utterances. Compared to
the standard attention mechanism above, it may
be beneficial to use multi-head attention (Vaswani
et al., 2017) to capture multiple potential emotion
distributions in parallel and obtain richer emotion
information:

He = concat(head1, ..., headm) (4)

headj = attention(QWQ
j ,KW

K
j ,VW V

j ) (5)

where WQ
j ,W

K
j ,W V

j ∈ Rdh×
dh
m are learnable

parameters and m is the number of parallel heads.



Since the emotion labels of the utterances in
the conversational history are known, we can also
simply use the embedding of emotion label corre-
sponding to the utterance as the extracted emotion
information:

He = X̃e (6)

where X̃e ∈ Rt×dh is the embedding of emotion la-
bels corresponding to all utterances in the conversa-
tional history. We refer to the method as Direct Ap-
plication Emotional Embedding (DAEE for short).
Compared with DAEE, the potential advantages
of the EAN are as follows: (1) The EAN can pro-
vide utterance-to-emotion interactions and capture
multiple potential emotion distributions through
multi-head attention to obtain more comprehen-
sive and richer emotion information; (2) The soft
emotion distributions can model the mutual impact
among different emotions for further enhancement
of emotion embeddings, while each emotion em-
bedding is relatively independent of each other in
DAEE; (3) The EAN can avoid emotion annotation
errors to a certain extent. We apply EAN in our
model to incorporate emotion information by de-
fault and compare the EAN and DAEE in the part
of experiments.

3.2.2 SAN
The SAN provides utterance-to-utterance interac-
tions to incorporate speaker information by per-
forming attention over the speaker relation graph.

Graphical Structure We define a conversational
history with t utterances as a graph G = (V, E ,R),
with nodes (utterances) vi ∈ V and labeled edges
(relations) (vi, r, vj) ∈ E , where r ∈ R is a rela-
tion type. We also add a self-loop edge to every
node, as the cause may be present within the target
utterance itself. The representation of node vi is
initialized with the contextual utterance represen-
tation hu

i ∈ Rdh , i.e., the ith embedding in Hu.
There are two relation types of edges: (1) Intra
relation type: how the utterance influences other
utterances (including itself) expressed by the same
speaker; (2) Inter relation type: how the utterance
influences ones expressed by other speakers.

SAN Inference The representation of a node hi

is updated by aggregating representations of its
neighborhoodN r(i) under the relation type r. The
graph attention mechanism (Veličković et al., 2018)
is used to attend to the neighborhood’s representa-
tions. The output of a node hs

i ∈ Rdh is calculated

as the sum of the hidden features hir ∈ Rdh under
relation r. The propagation is defined as follows:

αijr = softmaxi(LRL(aTr [Wrh
u
i ;Wrh

u
j ])) (7)

hir =
∑

j∈N r(i)

αijrWrh
u
j (8)

hs
i =

∑
r∈R

hir (9)

where αijr denotes the edge weight from utterance
ui to its neighborhood uj under relation type r,
Wr ∈ Rdh×dh and ar ∈ Rdh denote a learnable
weight matrix and a vector for each relation type
r respectively. LRL denotes LeakyReLU activation
function. The updated representation of all nodes
is denoted asHs ∈ Rt×dh .

3.2.3 Interaction Module

To effectively interchange relevant information be-
tween the EAN and SAN, we apply a mutual Bi-
Affine transformation as a bridge. The calculation
process is formulated as follows:

A1 = softmax(HeW1(H
s)T ) (10)

A2 = softmax(HsW2(H
e)T ) (11)

He′ = A1H
s (12)

Hs′ = A2H
e (13)

whereW1,W2 ∈ Rdh×dh are trainable parameters
and A1,A2 ∈ Rt×t are temporary alignment ma-
trices projecting from Hs to He and He to Hs,
respectively. Here,He′ ∈ Rt×dh can be viewed as
a projection from Hs to He , and Hs′ ∈ Rt×dh

follows the same principle.

3.2.4 The Whole Process

We generalize the TSAM to multiple successive
layers to iteratively refine and interchange emotion
and speaker information. The detailed procedures
are as follows:

He
l = EAN(El,X

e) (14)

Hs
l = SAN(Sl) (15)

He′
l ,H

s′
l = Interaction(He

l ,H
s
l ) (16)

El+1,Sl+1 =H
e′
l ,H

s′
l (17)

whereE0 = S0 =H
u. The TSAM can be stacked

in L layers and l ∈ [0, L− 1].



Statistics RECCON-DD

Data
Distributions

Train
Positive 7269
Negative 20646

Dev
Positive 347
Negative 838

Test
Positive 1894
Negative 5330

Cause
Type

Distributions

No Context 43%
Inter 32%
Intra 9%

Hybrid 11%
Unmentioned 5%

Table 1: Statistics of the RECCON-DD dataset. No
Context: The cause is present within the target ut-
terance itself; Inter: Inter-speaker emotional influ-
ences; Intra: Intra-speaker emotion influences (Self-
Contagion); Hybrid: Inter and Intra can jointly cause
the emotion of an utterance; Unmentioned: Some in-
stances have no explicit emotion causes in the conver-
sational history.

3.3 Cause Prediction
We obtain the final utterance representation for ui
by concatenating the output (EL,SL) of the L-
layer TSAM. Finally, the concatenated vector is
classified using a Fully-Connected Network (FCN):

li = ReLU(W1[e
L
i ; s

L
i ] + b1) (18)

ŷi = sigmoid(W2li + b2) (19)

where ŷi is the probability for utterance ui con-
taining the cause of emotion in the target utter-
ance, eLi , s

L
i ∈ Rdh denote the ith embedding in

EL and SL, respectively, W1 ∈ Rdh×2dh ,W2 ∈
R1×dh , b1 ∈ Rdh and b2 are learnable parameters
of FCN.

4 Experimental Settings

4.1 Dataset and Evaluation Metrics
We evaluate the proposed model on a benchmark
dataset for RECCON, named RECCON-DD (Poria
et al., 2021), which is constructed based on Daily-
Dialog dataset (Li et al., 2017).3 Some statistics
about RECCON-DD are reported in Table 1. Fol-
lowing (Poria et al., 2021), the macro-averaged F1
score is utilized as the evaluation metric in this pa-
per. We also report the F1 score for both positive
and negative samples, denoted as Pos. F1 and Neg.
F1 respectively.

3DailyDialog is a natural human communication dataset
which is usually used in ERC task. It contains utterance-level
emotion labels and covers various topics related to daily lives.

4.2 Baselines

For a comprehensive performance evaluation, we
compare our model with the following baselines:

(1) INDEPbase (Poria et al., 2021) It tackles CEE
in an independent classification framework (IN-
DEP) and uses the RoBERTa-Base model (Liu
et al., 2019) as the utterance encoder. The input is
formated as "[CLS]ut[SEP]ui[SEP]" and the clas-
sification is performed from the final representation
of the token "[CLS]".

(2) INDEPlarge (Poria et al., 2021) Compared to
(1), it uses the RoBERTa-Large model as utterance
encoder;

(3) JOINTbase It’s one of the variants of our
model, where the TSAM is removed. It tackles
RECCON in a joint classification framework
(JOINT) and uses the RoBERTa-Base model as the
utterance encoder. Moreover, its input format is
"[CLS]u1[SEP][CLS]u2[SEP],...,[CLS]ut[SEP]"
and the classifications are performed syn-
chronously from the corresponding contextual
utterance representations of the [CLS] tokens;

(4) JOINTlarge Compared to (3), it uses
RoBERTa-Large model as the utterance encoder.

For INDEP baselines, there are two different
settings: With Conversational History (W/ CH)
and Without Conversational History (W/O CH).
W/ CH means considering the conversational his-
tory. When performing utterance pair classification,
the conversational history L(ut) is concatenated af-
ter the input to incorporate contextual information,
while W/O CH means ignoring the conversational
history.

4.3 Implementation Details

Our model’s base and large versions use pre-trained
RoBERTa-Base and RoBERTa-Large models as the
utterance encoders, respectively.4 The binary cross-
entropy loss along with L2-regularization is used
during training, where the coefficient of L2 term
is 0.01 in the RoBERTa structure and 1e-5 in other
structures. We set the dropout rate to 0.1. The
learning rate and the batch size are set as 1e-5 and
2, respectively. Our model is trained with the Adam
optimizer (Kingma and Ba, 2015). We set the di-
mensions of the contextual utterance representation

4Our RoBERTa models are adapted from this im-
plementation: https://github.com/huggingface/
transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


# Model
W/O CH W/ CH

Pos. F1 Neg. F1 macro F1 Pos.F1 Neg.F1 macro F1

0 INDEPbase 56.64 85.13 70.88 64.28 88.74 76.51
1 INDEPlarge 50.48 87.35 68.91 66.23 87.89 77.06

2 JOINTbase - - - 66.61 89.11 77.86
3 JOINTlarge - - - 68.30 89.16 78.73

4 Oursbase - - - 68.59 89.75 79.17
5 Ourslarge - - - 70.00† 90.48† 80.24†

Table 2: Performance of our model and baselines on the test set of RECCON-DD. Bold font denotes the best
performance. “Ours” denotes the proposed model without removing any module (“Ours” = “JOINT” + TSAM). “†”
denotes that Ourslarge is statistically significant (Koehn, 2004) better than INDEPlarge W/ CH (p-value < 0.05).

dh as 768/1024 in the Base/Large version of the
proposed model. We use 4-head attention in EAN,
and the number of TSAM layers L is set to 3. We
train the model for 40 epochs in total and use the
early stopping strategy based on the performance
on the development set. Then, the model with the
highest macro-averaged F1 score is used to evalu-
ate the test set. Other hyper-parameters are selected
according to the performance of the development
set. All of the experiments are conducted on an
NVIDIA V100 GPU with 32GB of memory.

5 Results and Discussions

5.1 Main Results

Experimental results are reported in Table 2. We
directly cite the results for the baselines reported
in (Poria et al., 2021). For the performance of
each model we implemented, we report the average
score of 5 runs. From Table 2, we can find that
the proposed model (#5) outperforms all of the
baselines and surpasses the best model (#1, W/
CH) in (Poria et al., 2021) with more than 3 points
of macro F1 score.

Further comparisons show that models with the
large pre-trained utterance encoder are more likely
to achieve better performance (about 1 point of
macro F1 score) than the corresponding models
with the base one, except for the models under
W/O CH setting in the Table 2. By comparing
two different settings W/O CH and W/ CH in
Table 2, we can find that the conversational his-
tory plays a significant role for INDEPbase and
INDEPlarge models. This is mainly because that
the conversational history is able to provide the
contextual information for prediction. Due to the
simultaneous classification of multiple utterances

in the conversational history under the joint frame-
work, JOINTbase and JOINTlarge models can natu-
rally incorporate the contextual information. The
JOINTbase and JOINTlarge models significantly
outperform the INDEPbase W/ CH and INDEPlarge

W/ CH models by about 1.5 points of macro F1
scores respectively (comparing #0 with #2, and #1
with #3 in Table 2). There may be two main fac-
tors: 1) Simply concatenating the conversational
history after the utterance pair to be classified in
INDEP W/ CH models may destroy the structure
of the conversation; 2) Compared to INDEP W/
CH models, classification of multiple utterances
synchronously in JOINT models will have more
sufficient supervision signals and can more effec-
tively model the correlations between contextual
utterances in a global view, i.e., utterances with sim-
ilar semantics are supposed to have similar chances
being the emotion cause. The comparison between
#2 and #4 (or #3 and #5) in Table 2 shows the effec-
tiveness of the proposed TSAM. The model with
TSAM (#5) achieves an improvement up to 1.51
points of macro F1 score than the model without
TSAM (#3).

5.2 Ablation Study

In this subsection, we conduct ablation studies to
In this subsection, we conduct ablation studies to
analyze the effects of different components in the
proposed model based on Ourslarge mentioned in
Table 2.

Effect of Emotion Information We compare
three different ways for incorporating the emotion
information: no emotion information incorporated,
incorporating emotion information with direct ap-
plication emotional embedding, and incorporating



Emotion Information Pos. F1 Neg. F1 macro F1
No 68.40 89.80 79.10

DAEE 68.90 90.03 79.47
EAN 70.00 90.48 80.24

Table 3: Comparison of different ways of incorporat-
ing emotion information. No: no emotion information
incorporated; DAEE: incorporating the emotion infor-
mation with direct application emotional embedding.

emotion information with EAN. The results are
shown in Table 3. We can find that the performance
of the proposed model degrades if the emotion in-
formation is not incorporated (comparing row 1
with 3 in Table 3). This result shows that the emo-
tion information in the conversational history plays
a significant role in the task of CEE. By comparing
rows 2 with 3 in Table 3, the result shows that EAN
achieves better performance than DAEE since EAN
can extract richer emotion information and model
the mutual impact among different emotions.

Effect of Speaker Information To evaluate the
effects of speaker information, we remove the
speaker relations in SAN, resulting in a single edge
relation throughout the graph. As Table 4 shows,
the performance of our model decreases dramat-
ically if not considering the speaker information.
This result presents that modeling the speaker in-
formation in the conversational history is very im-
portant for the final performance.

Speaker Information Pos. F1 Neg. F1 macro F1
Not Consider 67.99 89.42 78.71

Consider 70.00 90.48 80.24

Table 4: Results on experiments whether considering
speaker information or not in SAN.

Effect of Interaction Module We remove the
interaction module in each layer so that the EAN
and SAN can’t interact. As Table 5 shows, the
performance of our model decreases dramatically
when the interaction module is removed. This re-
sult shows that the effective interchange of relevant
information between EAN and SAN is conducive
to the final performance.

Ability on Modeling Emotional Influences To
evaluate the proposed model’s ability to model the
speaker’s emotional influences, we collect the posi-
tive examples from the test set where the emotion
causes are induced from the inter-speaker or intra-

Pos. F1 Neg. F1 macro F1
W/O Interaction 68.18 88.93 78.56
W/ Interaction 70.00 90.48 80.24

Table 5: Results on experiments whether removing in-
teraction module or not in TSAM.

speaker emotional influences. And we test the pre-
diction accuracy on the collected samples for the
proposed Ourslarge with and without TSAM. As
shown in Table 6, W/ TSAM outperforms W/O
TSAM by around 2 points on both cause types,
which further verifies that the TSAM can effec-
tively model the emotional influences between
speakers.

Models Intra Inter
W/O TSAM 62.06 72.67
W/ TSAM 63.82 74.81

Table 6: Accuracy on the collected samples. In-
tra: Intra-speaker emotional influences; Inter: Inter-
speaker emotional influences.

5.3 Impact of the TSAM Layer Number

Since TSAM for modeling speakers’ emotional
influences is the critical component of our model,
we chose the number of TSAM layers L (ranging
from 1 to 5) on the development set of RECCON-
DD. As shown in Figure 3, our model with three
TSAM layers achieves the best performance. On
the one hand, emotion and speaker information
may not be refined and interchanged well when the
number of layers is small. On the other hand, if the
number of layers is excessive, the performance will
decrease, possibly due to information redundancy.

1 2 3 4 5
TSAM layers L

78

79

80

81

82

83

84
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Figure 3: Results of Ourslarge with various TSAM lay-
ers on the development set of RECCON-DD.



5.4 Error Analysis
By analyzing our predicted emotion causes, we
find that the following aspects mainly cause the
predicted errors. Firstly, our model weakly gives
the correct predictions for target utterances with
three or more causes.5 Compared to the utterances
with 1 or 2 causes, the proposed model dropped six
macro F1 scores on utterances with multiple causes.
Secondly, our model cannot predict well when the
underlying emotional cause is latent. At this point,
recognizing emotion causes may require complex
reasoning steps, and commonsense knowledge is
an integral part of this process. We take the case
below as an example:

• SA (happy): Hello, thanks for calling 123
Tech Help. I’m Todd. How can I help you?

• SB (fear): Hello? Can you help me? My
computer! Oh, man...

In this case, SA is happy to help SB . In this exam-
ple, the cause of happy emotion is due to the event
“greeting” or intention to provide help. On the other
hand, SB is fearful because his/her computer is bro-
ken. Both speakers’ causes of elicited emotions can
only be inferred using commonsense knowledge,
which our model doesn’t explicitly consider.

6 Related Work

ECE: Early works mainly exploit rule-based meth-
ods (Lee et al., 2010a,b; Chen et al., 2010) to iden-
tify the potential causes for certain emotion expres-
sions in the text. Gui et al. (2016a) first release
a public annotated dataset for ECE, and based on
which some feature based (Gui et al., 2016b) and
neural based methods (Gui et al., 2017; Li et al.,
2018; Ding et al., 2019; Xia et al., 2019; Yan et al.,
2021; Li et al., 2021b) appear successively. To ex-
tract emotion and its corresponding cause jointly,
Xia and Ding (2019) first put forward the Emotion-
Cause Pair Extraction (ECPE) task and tackle it
by a two-step method. Subsequently, many im-
proved methods are proposed to tackle ECPE in an
end2end manner (Ding et al., 2020a,b; Yuan et al.,
2020; Fan et al., 2020; Wei et al., 2020; Cheng et al.,
2020; Chen et al., 2020a,b). However, these works
mentioned above use news articles as the target
corpus for ECE, which largely reduces reasoning
complexity. By contrast, CEE is more challenging

5Utterances with 3 or more causes account for approxi-
mately 14% of the RECCON-DD dataset

due to the intermingling dynamic among interlocu-
tors and the informal expression style.
ERC: Recently, due to the proliferation of publicly
available conversational datasets (Zhou et al., 2018;
Chen et al., 2019; Poria et al., 2019a; Chatterjee
et al., 2019), there is a growing number of studies
on ERC (Hazarika et al., 2018a,b; Majumder et al.,
2019; Zhong et al., 2019; Jiao et al., 2019; Ghosal
et al., 2020b; Ishiwatari et al., 2020; Ghosal et al.,
2020a; Shen et al., 2021; Zhu et al., 2021; Hu et al.,
2021; Guibon et al., 2021). Although substantial
progress has been made in ERC, these studies lack
further reasoning about emotions, such as under-
standing the stimuli or the cause of an emotion
expressed by a speaker (Poria et al., 2021).
RECCON: For further reasoning about emotions,
Poria et al. (2021) propose a new task named REC-
CON, which contains two different sub-tasks: CSE
at word/phrase level and CEE at utterance level.
Poria et al. (2021) formalize CEE as a set of in-
dependent utterance pair classification problems,
neglecting the emotion and speaker information in
the conversational history. Specifically, they pair a
target utterance with each utterance in its conversa-
tional history and determine whether the utterance
contains the cause of emotion in the target utter-
ance. Thus, they cannot capture the correlations
between contextual utterances in a global view and
fail to model the speaker’s emotional influences in
the conversational history. From a new perspective,
we tackle CEE in a joint framework. We encode
and classify multiple utterances synchronously to
capture the correlations in a global view and pro-
pose a TSAM to model the speaker’s emotional
influences effectively.

7 Conclusion and Future Work

For the first time, we tackle CEE in a joint
framework. We classify multiple utterances syn-
chronously to capture the correlations between con-
textual utterances in a global view and propose a
TSAM to effectively model the speaker’s emotional
influences. Experimental results on the benchmark
dataset show that our model significantly outper-
forms the SOTA model, and further analysis ver-
ifies the effectiveness of each component in our
model. This paper points out a new reliable route
for follow-up works: incorporating the emotion
and speaker information explicitly and modeling
the speaker’s emotional influences effectively can
bring enormous benefits for the tasks similar to



CEE.
In the future, we would explore three aspects:

(1) Learn emotion recognition and emotion cause
recognition in conversations jointly; (2) Apply our
model to other similar tasks which need to incorpo-
rate the speaker and emotion information; (3) In-
corporate commonsense knowledge into the model
explicitly to address situations when the underlying
emotion cause is latent.
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